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Abstract

This paper considers an iterative algorithm for the identification of structured nonlinear systems. The systems considered consist of the

interconnection of a MIMO linear systems and a MIMO nonlinear system. The considered interconnection structure can represent as

particular cases Hammerstein, Wiener or Lur’e systems. A key feature of the proposed method is that the nonlinear subsystem may be

dynamic and is not assumed to have a given parametric form. In this way the complexity/accuracy problems posed by the proper choice

of the suitable parametrization of the nonlinear subsystem are circumvented. Moreover, the simulation error of the overall model is

shown to be a nonincreasing function of the number of algorithm iteration. The effectiveness of the algorithm is tested on the problem of

identifying a model for vertical dynamics of vehicles with controlled suspensions from both simulated and experimental data.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the paper, the problem of using data and physical
information in the identification of complex nonlinear
systems is investigated. Consider a discrete time MIMO
system represented by a regression function f o ¼

½f 1
o; . . . ; f

q
o� describing the time evolution of system output

as

yi
tþ1 ¼ f i

oðw
i
tÞ; i ¼ 1; . . . ; q,
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t�ny
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Identification aim is to find estimates f̂ of f o from a set of
noise corrupted measurements ~yi

t and ~wi
t; i ¼ 1; . . . ; q; t ¼
e front matter r 2006 Elsevier Ltd. All rights reserved.
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1; 2; . . . ;T of outputs yi
t and of regressors wi

t, possibly

minimizing some measure of the identification error f o � f̂ .
Because of finiteness of data, no finite bound or confidence
interval can be derived for the identification error if no
further information is available on f oðwÞ. This information
is typically given by assuming that it belongs to some
parametric family f ðw; yÞ of functions. When possible, first
principle laws are used to derive equations describing the
evolution of the variable of interest, where the functional
forms of involved nonlinear functions are known, depend-
ing on some unknown parameters y. In other situations,
due to the fact that the laws are too complex or not
sufficiently known, this is not possible or not convenient
and a black-box approach is taken, considering that f o

belongs to a suitably chosen parametrized set of functions
f ðw; yÞ ¼

Pr
i¼1 aisiðw;biÞ; bi 2 Rq; where y ¼ ½a;b� and the

si’s are given functions, e.g. piece-wise linear, polynomial,
sigmoidal, wavelet, etc. (Haber & Unbehauen, 1990;
Isermann, Ernst, & Nelles, 1997; Narendra & Mukhopad-
hyay, 1997; Sjöberg et al., 1995). In both cases, physical or
black-box modeling, the problem is reduced to estimating
the parameters y from data. This task may be performed
by minimizing some suitable functional, as done e.g. in
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Fig. 1. Structure decomposition.
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prediction error methods, which exhibit important statis-
tical properties (Bauer & Ninness, 2002; Ljung & Caines,
1979). However, several problems may arise. The func-
tional to be minimized may result in most cases not convex
and trapping in local minima may occur, causing serious
accuracy problems even in case of exact modeling, i.e. that
f oðwÞ ¼ f ðw; yo

Þ for some ‘‘true’’ yo. Indeed, in general
both first principle laws or black-box model selection
procedures can give only approximate modeling of the
involved phenomena, i.e. not completely correct informa-
tion is provided to the identification procedure, since
f oðwÞaf ðw; yÞ; 8y. The incorrect part of the assumed
information may counteract the positive effects induced
on identification accuracy by the correct part. Evaluating
the overall balance of these two effects on the identification
error, though actively investigated in the last decade for the
case of linear systems (Chen & Gu, 2000; Milanese,
Norton, Piet Lahanier, & Walter, 1996; Partington,
1991), is a largely open problem for nonlinear systems.

These considerations suggest the interest in identification
methods able to account for different kinds of knowledge
about the system, able to provide information which may
be to a large extent considered correct. In many applica-
tions, this can be provided by information on the physical
interconnection structure of the system to be identified,
allowing its decomposition in subsystems, connected
through unmeasured signals. Typical cases considered in
the literature are Hammerstein, Wiener and Lur’e systems,
consisting of two subsystems, a linear dynamic one and a
nonlinear static one, connected in cascade or feedback
form (Bai, 2002, 2003; Billings & Tsang, 1990; Crama &
Shoukens, 2001; Lang, 1997). Among the many approaches
proposed in the literature for the identification of such
classes of systems, iterative algorithms have been proposed
(see e.g. Narendra & Gallman, 1966; Rangan, Wolodkin, &
Poolla, 1995; Stoica, 1981; Vörös, 1999) based on the fact
that if the interconnecting signals are known, the identi-
fication problem reduces to the identification of each
subsystems from their input–output data. The guesses on
the interconnecting signal are then iteratively adapted on
the base of the identified submodel at each iteration.
Though their convergence properties are not completely
understood (Crama & Shoukens, 2001; Narendra &
Gallman, 1966; Rangan et al., 1995; Stoica, 1981; Vörös,
1999) these algorithms proved to give satisfactory results in
many simulated and real problems.

In this paper we propose an iterative algorithm, based on
the same principle, able to deal with more complex
interconnection structures which may arise in practical
applications, where the nonlinear subsystems may be
dynamic.

A key feature of the method is that the nonlinear
dynamic subsystems are not supposed to have a given
parametric model. In this way the above discussed
problems posed by the proper choice of a suitable
parametrization and the drawbacks related to the effects
of approximate modeling are circumvented. Moreover, the
simulation error of the overall model is shown to be a
nonincreasing function of iterations. Indeed, the algorithm
may converge in few iterations to very satisfactory
estimates even for quite rough initializations, as shown in
the presented example, related to the identification of the
vertical dynamics of vehicles with controlled suspensions.
Two sets of data are used. The first set is composed of
simulated data, thus allowing direct comparisons of
identified subsystems and connecting signal with the
‘‘true’’ ones generating the data. The second set consists
of experimental data acquired on a real car, thus showing
that the proposed structured identification algorithm may
prove to give quite good results in nontrivial real
applications.

2. Structured experimental modeling

In the paper it is considered that the system to be
identified, using information on its physical interconnec-
tion, can be represented by the decomposition structure of
Fig. 1.
All the signals u; y; v may be multivariable. Submodels

M1 and M2 are dynamic MIMO discrete time systems, one
linear and the other nonlinear. The problem is to identify
M1 and M2, supposing that noise corrupted measurements
~u ¼ ½ ~u1; . . . ; ~uT � and ~y ¼ ½ ~y1; . . . ; ~yT � of input and output
sequences are available, but the interconnecting sequence
v ¼ ½v1; v2; . . .� is unknown.
Note that this structure allows to represent widely

studied classes of models such as: Hammerstein models,
where M1 is a static nonlinearity vðtÞ ¼ f ðuðtÞÞ not
depending on y and M2 is linear dynamic; Wiener models,
where M2 is a static nonlinearity yðtÞ ¼ f ðvðtÞÞ and M1 is
linear dynamic with transfer function from y to v equal to
zero; Lur’e models, where M1 is a static nonlinearity vðtÞ ¼

f ðuðtÞ � vðtÞÞ and M2 is linear dynamic. Indeed, more
complex structures can be represented as well, e.g. the one
of Fig. 6, arising in modeling vehicles vertical dynamics.
Assuming parametric forms M1ðy1Þ and M2ðy2Þ for the

two subsystems, estimates of y1; y2 can be obtained e.g. by
prediction error methods. Even if linear parametrizations
are adopted for M1 and M2, the overall optimization
problem is not convex, possibly leading to poor identifica-
tion results because of trapping in local minima. Alter-
native iterative procedures have been proposed for the
identification of Hammerstein or Wiener models, based on
the fact that if interconnecting signal v is known, the
problem reduces to estimation of M1ðy1Þ and M2ðy2Þ from
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their input–output data. Then, the guesses on the
interconnecting signal v are iteratively adapted on the base
of the identified submodel at each iteration (see e.g.
Narendra & Gallman, 1966; Rangan et al., 1995; Stoica,
1981; Vörös, 1999).

An iterative identification scheme based on the same
principle is here proposed for the general structure of
Fig. 1, where the nonlinear subsystem may be dynamic and
no assumption on functional form of the related regression
function is made.

A model M is represented in regression form by its
regression function f. Just for the sake of simplicity,
consider that M1 is nonlinear, while M2 is linear. Then, M1

is represented by the nonlinear regression:

vtþ1 ¼ f ðvt; vt�1; . . . ; vt�nv
; yt; yt�1; . . . ; yt�ny

; ut; ut�1,

. . . ; ut�nu
Þ

and M2 is represented by the linear regression:

ytþ1 ¼ aoyt þ a1yt�1 þ � � � þ any
yt�ny
þ bovt þ b1vt�1

þ � � � þ bnv
vt�nv

.

The output sequence of a model M driven by an input
sequence u is indicated as M½u�. The model relating u and y

in Fig. 1 is denoted as MðM1;M2Þ, i.e. y ¼MðM1;M2Þ½u�.
Let the sequences u ¼ ½u1; . . . ; uT � and y ¼ ½y1; . . . ; yT � be

known, while v ¼ ½v1; . . . ; vT � is unknown. Consider a
partition of known data: y ¼ ½ye; yv�, u ¼ ½ue; uv�.

Structured identification algorithm
�
 Initialization:
� Get an initial guess M

ðoÞ
2 for M2 and set M

ðoÞ
1 ¼ 0

� Set k ¼ 1

�
 Iteration k:

(1) Compute a sequence vðkÞ such that M
ðk�1Þ
2 ½vðkÞ� � ye

(2) Identify a nonlinear regression model ~M
ðkÞ

1 using ue

and ye as input sequences and vðkÞ as output sequence

(3) Identify a linear model ~M
ðkÞ

2 using ~vðkÞ ¼ ~M
ðkÞ

1 ½u
e; ye�

as input sequence and ye as output sequence
(4) Compute an ¼ arg mina2R2 Jðyv � yðkÞa Þ

where:

Jðyv � yðkÞa Þ ¼ ky
v � yðkÞa k

2
2

yðkÞa ¼MðMa
1;M

a
2Þ½u

v�

Ma
1 ¼M

ðk�1Þ
1 þ a1ð ~M

ðkÞ

1 �M
ðk�1Þ
1 Þ

Ma
2 ¼M

ðk�1Þ
2 þ a2ð ~M

ðkÞ

2 �M
ðk�1Þ
2 Þ

(5) Set M
ðkÞ
1 ¼Man

1 , M
ðkÞ
2 ¼Man

2 , k ¼ k þ 1 and return

to step 1
In step 1, if a stable right inverse of M
ðkÞ
2 exists, vðkÞ ¼

ðM
ðkÞ
2 Þ
�1
½ye� could be chosen. If a right inverse of M

ðkÞ
2 does

not exists or is not stable, vðkÞ can be computed as vðkÞ ¼

M
y

2½y
e� where M

y

2 is an approximate stable inverse of M
ðkÞ
2

computed by solving the following H1 optimization
problem:

M
y

2 ¼ arg min
Q2H1

k½1�M
ðkÞ
2 Q�Wk1,

where W is a low pass filter chosen on the basis of the
spectral features of measured signals and of noise affecting
such measurements. Even in case a stable right inverse of
M
ðkÞ
2 exists, the use of M

y

2 instead of the exact inverse is
preferable, in order to avoid unduly amplification of the
effects of noise outside the spectral band of measured
signals.
In step 2, the nonlinear Set Membership (NSM) method

of Milanese and Novara (2004) can be used in order to
circumvent the above discussed drawbacks related to the
choice of a suitable parametric forms of the regression
function f 2 representing M2 and by the effects of the
resulting approximation. Indeed, the NSM method does
not assume any parametric form for f 2, but only a bound
on its gradient. A brief outline of the method is reported in
Section 3.
Note that choosing a ¼ 1 and using parametric models

estimated by prediction error method, the algorithm
reduces to classical iterative algorithms proposed for
Hammerstein and Wiener models (see e.g. Narendra &
Gallman, 1966; Stoica, 1981; Vörös, 1999). However, in
such cases the nonincreasing behavior of the simulation
error may not take place, caused not only by the above
discussed problems of nonconvexity of prediction error
functional and approximate modeling, but also by the fact
that minimization of prediction error does not imply
minimization of simulation error (see e.g. Milanese &
Novara, 2003).
The next result shows that the iterative identification

algorithm proposed in this paper is such that the
simulation error JnðkÞ is not increasing for increasing
number of algorithm iterations.

Proposition 1. Let JnðkÞ ¼ mina2R2 Jðyv � yðkÞa Þ. Then

Jnðk þ 1ÞpJnðkÞ; 8k.

Proof. Clearly

JnðkÞ ¼ min
a2R2

Jðyv � yðkÞa Þ ¼ Jðyv � y
ðkÞ
anðkÞÞ;

y
ðkÞ
anðkÞ ¼MðM

anðkÞ
1 ;ManðkÞ

2 Þ½uv�;

where the notation anðkÞ is used to evidence the dependence
of an on k. On the other hand:

y
ðkþ1Þ
a¼0 ¼MðM

ðkÞ
1 ;M

ðkÞ
1 Þ½u

v�.

Since M
ðkÞ
1 ¼M

anðkÞ
1 and M

ðkÞ
2 ¼M

anðkÞ
2 , it follows:

y
ðkþ1Þ
a¼0 ¼MðM

anðkÞ
1 ;ManðkÞ

1 Þ½uv� ¼ y
ðkÞ
anðkÞ. Then

Jðyv � y
ðkþ1Þ
a¼0 Þ ¼ Jðyv � y

ðkÞ
anðkÞÞ ¼ JnðkÞ.
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Taking the minimum over a shows that:

Jnðk þ 1Þ ¼ min
a2R2

Jðyv � yðkþ1Þa ÞpJnðkÞ: &

3. Set membership identification of nonlinear systems

In this section the main concepts and results of the NSM
identification method (Milanese & Novara, 2004) used in
step 2 are briefly recalled.

Consider that a set of noise corrupted data ~Y T ¼

½ ~ytþ1; t ¼ 1; 2; . . . ;T � and ~W T ¼ ½ ~wt; t ¼ 1; 2; . . . ;T � gen-
erated by (1) is available. For the sake of notational
simplicity the case q ¼ 1 is considered. Then

~ytþ1 ¼ f oð ~wtÞ þ dt; t ¼ 1; 2; . . . ;T , (2)

where the term dt accounts for the fact ytþ1 and wt are not
exactly known.

The aim is to derive an estimate f̂ of f o from available

measurements ð ~Y T ; ~W T Þ, i.e. f̂ ¼ fð ~Y T ; ~W T Þ. The opera-
tor f, called identification algorithm, should be chosen to

give small (possibly minimal) Lp error kf o � f̂ kp, where

kf kp¼
:
½
R

W
jf ðwÞjp dw�1=p, p 2 ½1;1Þ and kf k1¼

:
ess-

supw2W jf ðwÞj and W is a given bounded set in Rn.
Whatever algorithm f is chosen, no information on the

identification error can be derived, unless some assumptions
are made on the function f o and the noise d. The typical
approach in the literature is to assume a finitely parametrized
functional form for f o (linear, bilinear, neural network, etc.)
and statistical models on the noise (Haber & Unbehauen,
1990; Isermann et al., 1997; Narendra & Mukhopadhyay,
1997; Sjöberg et al., 1995). In the NSM approach, different
and somewhat weaker assumptions are taken, not requiring
the selection of a parametric form for f o, but related to
its rate of variation. Moreover, the noise sequence DT ¼

½d1; d2; . . . ; dT � is only supposed to be bounded.

Prior assumptions on f o:
f o 2 K¼

:
ff 2 C1ðW Þ : kf 0ðwÞkpg; 8w 2W g.

Prior assumptions on noise:
DT 2 D¼

:
f½d1; . . . ; dT � : jdtjpet; t ¼ 1; 2; . . . ;Tg.

Here, C1ðW Þ is the class of continuously differentiable

functions on the set W, f 0ðwÞ denotes the gradient of f ðwÞ

and kxk¼
:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x2
i

q
is the Euclidean norm.

A key role in this Set Membership framework is played
by the feasible systems set, often called ‘‘unfalsified systems
set’’, i.e. the set of all systems consistent with prior
information and measured data.

Definition 1. The feasible systems set FSST is

FSST¼
:
ff 2 K : j ~ytþ1 � f ð ~wtÞjpet; t ¼ 1; 2; . . . ;Tg. (3)

The feasible systems set FSST summarizes all the
information on the mechanism generating the data that is
available up to time T. If prior assumptions are ‘‘true’’,
then f o 2 FSST , an important property for evaluating the
accuracy of identification.

As typical in any identification theory, the problem of
checking the validity of prior assumptions arises. The only
thing that can be actually done is to check if prior
assumptions are invalidated by data, evaluating if no
system exists consistent with data and assumptions, i.e. if
FSST is empty. Indeed the fact that the priors are
consistent with the present data, i.e. FSSTa;, does not
exclude that they may be not consistent with future data.
However, it is usual to introduce the concept of prior
assumption validation as follows.

Definition 2. Prior assumptions are considered validated if
FSSTa;.

Necessary and sufficient condition for checking the
assumptions validity are given by the following result.
Let us define the functions:

f ðwÞ¼
:

min
t¼1;...;T

ðht þ gkw� ~wtkÞ;

f ðwÞ¼
:

max
t¼1;...;T

ðht � gkw� ~wtkÞ;
(4)

where ht¼
:
~ytþ1 þ et and ht¼

:
~ytþ1 � et.

Theorem 1.
(i)
 f ð ~wtÞXht; t ¼ 1; 2; . . . ;T
is necessary condition for prior assumptions to be

validated.
(ii)
 f ð ~wtÞ4ht; t ¼ 1; 2; . . . ;T
is sufficient condition for prior assumptions to be

validated.
Proof. See Milanese and Novara (2004). &

The validation Theorem 1 and prior information on the
system can be jointly used for assessing the values of the
constants g and et appearing in the assumptions on
function f o and on noise dt such that sufficient condition
holds (see Milanese & Novara, 2004).
The functions f ðwÞ and f ðwÞ allow also to solve the

problem of finding the smallest interval guaranteed to
include f oðwÞ. In fact, provided that prior assumptions
hold:

inf
f2FSSFT

f ðwÞpf oðwÞp sup
f2FSST

f ðwÞ; 8w 2W . (5)

Thus, supf2FSST
f ðwÞ and inf f2FSSF T

f ðwÞ are the tightest
upper and lower bounds of f oðwÞ and are called optimal

bounds.
The following theorem shows that the optimal bounds

are actually given by f ðwÞ and f ðwÞ.
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Theorem 2.

f ðwÞ ¼ sup
f2FSST

f ðwÞ;

f ðwÞ ¼ inf
f2FSSFT

f ðwÞ:

Proof. See Milanese and Novara (2004). &

For given estimate, fðFSST Þ ¼ f̂ , the related Lp error
kf o � f̂ kp cannot be exactly computed, but its tightest
bound is given by kf o � f̂ kppsupf2FSST

kf � f̂ kp. This
motivates the following definition of the identification
error, often indicated as guaranteed error.

Definition 3. The identification error of f̂ ¼ fðFSST Þ is

E½fðFSST Þ�¼
:

sup
f2FSST

kf � f̂ kp.

Looking for algorithms that minimize the identification
error, leads to the following optimality concepts.

Definition 4. An algorithm fn is called optimal if

E½fn
ðFSST Þ� ¼ inf

f
E½fðFSST Þ� ¼ rI .

The quantity rI , called radius of information, gives the
minimal identification error that can be guaranteed by any
estimate based on the available information up to time T.

The next result shows that the algorithm:

fcðFSST Þ ¼ f c¼
: 1
2
ðf þf Þ

is optimal for any Lp norm and that the corresponding
minimal identification error can be actually computed.

Theorem 3. For any LpðW Þ norm, with p 2 ½1;1�:
(i)
 The identification algorithm fcðFSST Þ ¼ f c is optimal.

(ii)
 Eðf cÞ ¼

1
2
kf � f kp ¼ rI ¼ inffE½fðFSST Þ�.
Proof. See Milanese and Novara (2004). &

We conclude this section by summarizing the main
features of the NSM method, and by comparing them to
the main features of the most common identification
methods in the literature.
�
 The NSM method does not assume to know the
functional form of nonlinear regression function, in
contrast with most methods, which assume that it
belongs to a finitely parametrized family. Thus, the
method does not require extensive searches of such
functional form and reduces the effects of modeling
errors due to the use of approximate forms.

�

Fig. 2. The half-car model.
The NSM method does not require to solve an iterative
optimization problem. At the contrary, most of para-
metric methods are based on the prediction error
method, which requires the iterative minimization of a
quadratic error function. In several cases, such as neural
and neuro-fuzzy networks, the minimization problem is
nonconvex. This gives rise to possible deteriorations in
accuracy due to trapping in local minima.

�
 The noise is assumed to be bounded in the NSM
context. Standard approaches use instead statistical
assumptions such as stationarity, uncorrelation, etc.
The validity of such assumptions is difficult to be
reliably checked and anyway is lost in presence of
approximate modeling.

On the basis of these theoretical features, it is expected that
models obtained by means of the proposed method may
have good performance and exhibit good robustness versus
imprecise knowledge of involved nonlinearities and of
noise properties.

4. Identification of controlled suspension vehicles: simulation

data

Models of vehicles vertical dynamics are very important
tools in the automotive field, especially in view of the
increasing diffusion of controlled suspension systems
(Krtolica & Hrovat, 1992; Lu & DePoyster, 2002). Indeed,
accurate models may allow efficient tuning of control
algorithms in computer simulation environment, thus
significantly reducing the expensive in-vehicle tuning effort.
In this section, unstructured and structured identification

procedures are performed on simulated data obtained by
the half-car model shown in Fig. 2. The main variables
describing the model are:
�
 prf and prr: front and rear road profiles.

�
 isf and isr: control currents of front and rear suspen-
sions.

�
 acf and acr: front and rear chassis vertical accelerations.

�
 pcf and pcr: front and rear chassis vertical positions.

�
 pwf and pwr: front and rear wheels vertical positions.

�
 Fcf and F cr: forces applied to chassis by front and rear
suspensions.

�
 Fwf and F wr: forces applied to front and rear wheels by
tires.
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The chassis, the engine and the wheels are simulated as
rigid bodies. The vehicle is assumed to travel in a constant

speed V ¼ 60 km=h. The following nonlinear characteristic
has been assumed for suspensions:

FcnðtÞ ¼ KsDpsðtÞ þ FsðDvsðtÞ; iðtÞÞ,

where * stands for f or r, Fcn is the suspension force, Dps ¼

pwn � pcn and Dvs ¼ _pwn � _pcn are the differences of
position and velocity at the extremes of suspension, i is
the control current, Ks ¼ 17 200N=m, F sðDvs; iÞ is shown in
Fig. 3a for the two extreme values i ¼ 0 and 1:6A. The
following static nonlinear characteristic has been assumed
for tires:

FwnðtÞ ¼ FeðDpwðtÞÞ þ bwDvwðtÞ,
Fig. 3. (a) Force-velocity characteristic F s of suspensio

Fig. 4. Simulation data: front chassis accelerations
where Fwn is the tire force, Dpw ¼ prn � pwn and Dvw ¼

_prn � _pwn are the differences of position and velocity at the
extremes of tire, bw ¼ 10 000Ns=m and FeðDpwÞ is shown
in Fig. 3b.
The half-car model, called for short ‘‘true system’’, has

been implemented in Simulink in order to obtain data
simulating a possible experimental setup, characterized by
type of exciting input, experiment length, variables to be
measured and accuracy of sensors.
It is considered that the road profile prf ðtÞ is known, that

prrðtÞ ¼ prf ðt� ‘=V Þ, where ‘ is the distance between
front and rear wheels, that currents isf ðtÞ and isrðtÞ

can be measured with a precision of 3:75% and that
variables acf ðtÞ, acrðtÞ can be measured with a precision
of 5%.
n. (b) Force–displacement characteristic F e of tires.

: ‘‘true’’ (bold line), NSMU model (thin line).
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A data set has been generated from ‘‘true system’’
simulation, for a period of 24 s, using a random profile with
amplitude o4 cm. The data set consists of the values of prf ,
prr, isf , isr, acf and acr recorded with a sampling time of
t ¼ 1

512
s. The sequence of each measured variables is

composed of 12 280 samples. The values of acf and acr

have been corrupted by uniformly distributed noises of
relative amplitude 5% and the values of isf and isr have
been corrupted by uniformly distributed noises of relative
amplitude 3.75%. The data set related to the first 20 s,
called estimation data set, has been used for models
identification. The data set related to the last 4 s, called
validation data set, has been used to test the simulation
accuracy of identified models.

Discrete time models with four inputs and two outputs,
relating front and rear chassis accelerations to the road
profile and control currents at the sampling times, have
been identified from the estimation data set. In particular,
an overall nonlinear model, indicated as NSMU (nonlinear
set membership unstructured), not using information on
system structure, has been identified using the Set Member-
ship approach.

The model is of form (1) with q ¼ 2, m ¼ 4, y1
t ¼ acf ðttÞ,

y2
t ¼ acrðttÞ, u1

t ¼ prf ðttÞ, u2
t ¼ prrðttÞ, u3

t ¼ isf ðttÞ and
u4

t ¼ isrðttÞ. Models with values of ny, n1, n2, n3, n4 up to
10 have been identified and the best one has been chosen,
having ny ¼ 8, n1 ¼ 3, n2 ¼ 3, n3 ¼ 1, n4 ¼ 1.

The simulation results of such a model has been tested
on the validation data set. Because of space limitations,
Fig. 5. Block diagram
results related to the front acceleration are reported, but
the ones related to the rear acceleration are similar.
In Fig. 4, a portion of ‘‘true’’ data and of the ones

obtained by the identified NSMU model are reported. The
root mean square simulation error on the validation data
set is reported in Table 1.
In order to check if better results could be obtained by

using alternative unstructured methods, a model has been
identified using the neural networks toolbox of Matlab.
Several one-hidden-layer neural networks with sigmoidal
basis functions and with number of neuron ranging from 3 to
20 have been trained on the estimation set and the best
estimated model, having 6 neurons, has been chosen and
called NNU. The simulation results on the validation
data set reported in Table 1 suggest the evidence that using
only the available data without further information on the
system structure, no more accurate models could be obtained.
The structured identification approach of Section 2 is then
used. Considering its physical structure, the half-car model
can be represented by the block diagram of Fig. 5.
The block CE represents the behavior of chassis and

engine. Since for usual road profiles the chassis pitch angle
are small (o526�), this block can be considered linear. The
blocks Sf and Sr represent the behavior of front and rear
suspension dampers and springs. These blocks are the main
sources of nonlinearities in the system, mainly due to the
significant nonlinearities of dampers, see Fig. 3a. The blocks
W f and W r represent the inertial behavior of front and rear
wheels and unsprung masses. These blocks are linear. The
of half-car model.
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blocks Tf and Tr represent the behavior of front and rear
tires. These blocks also are nonlinear, see Fig. 3b.

The block diagram of Fig. 5 can be represented in a more
compact form by the block diagram of Fig. 6. In this form,
the half-car model is represented as a generalized Lur’e
system, consisting of the linear MIMO system CE,
connected in a feedback form with the two nonlinear
dynamic systems SWTf and SWTr, representing the
overall behavior of front and rear suspensions, wheels
and tires.

This decomposition structure can be recast in the form of
Fig. 1 with the following positions:

u ¼

prr

prf

isr

isf

2
66664

3
77775; y ¼

acr

acf

" #
; v ¼

Fcr

Fcf

" #
:

Fig. 6. Generalized Lur’e form of half-car model.

Fig. 7. Simulation data: bode plots of CEð1; 1Þ: ‘‘true’’ (bold line
Clearly M2 ¼ CE and represents the behavior of chassis
and engine, while subsystem M1 is composed of the two
nonlinear dynamic systems SWTf and SWTr, representing
the overall behavior of front and rear suspensions, wheels
and tires.
Based on this decomposition structure, the iterative

identification algorithm of Section 2 has been applied. The
overall identified model relating u and y identified at the
end of iteration k is denoted NSMSðkÞ.
The initial guess for CE required at the initialization step

has been obtained from the laws of motion, assuming
chassis and engine as a unique rigid body, leading to a
2� 2 transfer matrix with constant elements. Indeed, the
‘‘true’’ 2� 2 transfer matrix has elements which are
transfer functions of order 4, see Fig. 7 where the Bode
plots of elements (1,1) of these transfer matrices are
reported. It can be noted that this initial model error is
relevant, giving large errors (’ 100%) in the initial
estimates of forces F cf and Fcr, see Fig. 8. This under-
modeling is intentionally introduced, in order to show that
despite of this rough initialization, the algorithm converges
in few iterations to a quite good solution.
In step 2, discrete time nonlinear models of SWTf and

SWTr are identified using the NSM approach of Milanese
and Novara (2004). The models are of the form:

vtþ1 ¼ f ðvt; . . . ; vt�nv
; yt; . . . ; yt�ny

; u1
t ; . . . ; u

1
t�n1

; u2
t ; . . . ; u

2
t�n2
Þ

with vt ¼ FcnðttÞ, yt ¼ acnðttÞ, u1
t ¼ prnðttÞ, u2

t ¼ isnðttÞ,
where * stands for f or r. Models with values of nv, ny, n1

and n2 between 1 and 6 have been identified and
the best one has been chosen, having nv ¼ 2, ny ¼ 3,
n1 ¼ 3, n2 ¼ 1.
In step 3, the model of CE is obtained identifying linear

output error (OE) models by means of the Matlab
), initial model (dashed line), model at iteration 2 (thin line).
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Fig. 8. Simulation data: forces applied to chassis from suspensions: ‘‘true’’ (bold line), estimate at iteration 1 (dashed line), estimate at iteration 2

(thin line).

Fig. 9. Simulation data: front chassis accelerations: ‘‘true’’ (bold line), NSMSð2Þ model (thin line).

Table 1

Simulation data: root mean square front chassis acceleration errors on the

validation data set

Model NSMU NNU NSMSð1Þ NSMSð2Þ

RMSE 0.656 0.660 0.502 0.208
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Identification Toolbox, of the following form:

ytþ1 ¼ aoyt þ � � � þ any
yt�ny
þ bovtþ1 þ � � � þ bnv

vt�nv

with vt ¼ ½F cf ðttÞ;FcrðttÞ�, yt ¼ ½acf ðttÞ; acrðttÞ�. Several
orders have been tested and the best results have been
obtained by an OEð6; 6; 0Þ model.

The results derived by the NSMSðkÞ models identified at
iterations k ¼ 1; 2 are now compared with ‘‘true’’ data on
the testing data set.

In Fig. 7 the elements (1,1) of the ‘‘true’’ transfer matrix
CE, of the initial guess and of transfer matrix identified at
the 2nd iteration are reported. In Fig. 8 ‘‘true’’ forces
applied to chassis by suspensions and the ones estimated at
the 1st and 2nd iteration are shown. In Fig. 9 ‘‘true’’ front
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acceleration and the ones estimated by NSMSð2Þ model are
shown for a portion of validation data. In Table 1 the root
mean square simulation errors between ‘‘true’’ and
estimated front accelerations are reported.

It can be noted that, though the initialization of iterative
algorithm is (intentionally) quite crude, after two iterations
the estimates of transfer matrix CE and of forces F cn are
significantly improved, reflecting in significant improve-
ments of identification accuracy evaluated by chassis
accelerations errors. A third iteration has been also
performed, but no significant decrease of errors have been
obtained. Finally, it can be noted that a significant
improvement in identification accuracy over the unstruc-
tured identification methods has been obtained. In fact, the
RMSE errors provided by the unstructured models NNU
and NSMU are about 300% greater than the RMSE error
provided by the structured model NSMSð2Þ.
5. Identification of controlled suspension vehicles:

experimental data

In this section identification is performed from experi-
mental data measured on a ‘‘four-poster’’ test bench of a
segment C car, equipped with a continuous dampers control.
Vertical displacements at tires are imposed, related to
different types of road profiles at different constant speeds
and front and rear chassis accelerations, wheels accelerations,
and control currents of the dampers are measured. These
measurements are obtained from the onboard accelerometers,
needed by the continuous dampers control system. The tests
for the acquisitions of experimental data were performed in
the Fiat—Elasis Research Center in Pomigliano d’Arco
Fig. 10. Car on the ‘‘fou
(Italy) on a C-segment prototype vehicle, equipped with
controlled dampers and a CDC-Skyhook (continuous damp-
ing control) system. The CDC-Skyhook system is character-
ized by the following control settings:
�

r-po
Constant hard (CH): The dampers currents are on
average zero, giving the maximum dampening effect.

�
 Hard (H): The dampers are controlled with current
modulated by the CDC-Skyhook control unit according
to a ‘‘sporting’’ calibration.

�
 Soft (S): The dampers are controlled with current
modulated by the CDC-Skyhook control unit according
to a ‘‘comfort’’ calibration.

�
 Constant soft (CS): The dampers currents are on
average maximum, giving the minimum dampening
effect.

The tests for the model identification were performed on a
‘‘four-poster’’ MTS test bench, specifically designed for
vibration analysis of complete vehicles, see Fig. 10. This
test bench is composed of four plates, which are vertically
driven by hydraulic pistons, in order to simulate given road
profiles.
For each test, the variables which are used for the

identification of the model were measured by means of the
original CDC-Skyhook sensors: 2 vertical accelerometers
on the chassis, positioned at the front left and right
suspension top mount; 1 vertical accelerometer on the
chassis, positioned at the rear right suspension top mount.
Furthermore, the test bench provides the position

measures of the 4 plates. The pistons of the test bench
were driven using experimental data from road tests on
specific road profiles. The used road profiles (see Table 2)
ster’’ test bench.
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Table 2

Road profiles and Skyhook settings used for data acquisition

Road profile Speed (km/h) Skyhook setting Length (s)

Random 60 CH 14

Random 60 H 14

Random 60 S 14

Random 60 CS 14

English track 60 CH 14

English track 60 H 14

English track 60 S 14

English track 60 CS 14

Short back 30 S 14

Motorway 140 CH 14

Motorway 140 CS 14

Pavé 40 CH 14

Drain well 30 S 14
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are symmetric with respect to the longitudinal axis of the
vehicle and are among the ones used for the on-road tuning
of the CDC control system. These road profiles were
chosen since they allow to test different dynamic conditions
of the vehicle, in terms of frequencies and amplitudes:
�
 Random: random road.

�
 English track: road with irregularly spaced holes and
bumps.

�
 Short back: impulse road.

�
 Motorway: level road.

�
 Pavé track: road with small amplitude irregularities.

�

Table 3

Experimental data: root mean square chassis acceleration errors on the

testing data set

Model RMSE (front) RMSE (rear)

NSMSð1Þ 2.85 3.53

NSMSð2Þ 0.71 0.86
Drain well: negative impulse road.

The vehicle speed during the on-road acquisition is
associated at each road profile. Such speed was also used
to determine the delay between the front and rear plates
displacements and was also fed to the CDC-Skyhook
system for its own algorithms. The sampling frequency is
512Hz for all the signals.

The complete data set, consisting of 93 184 data, has
been partitioned as follows:
Table 4

Experimental data: root mean square chassis acceleration errors obtained
�

by model NSMSð2Þ on the testing data set

Road profile Skyhook setting RMSE (front) RMSE (rear)
Identification set: The data corresponding to the first 7 s
of each acquisition. This set has been used for model
identification.

�

Random CH 1.24 1.54

Random H 0.59 0.65

Random S 0.55 0.59

Random CS 0.67 0.68

English track CH 1.50 1.93

English track H 1.03 1.21

English track S 1.04 1.20

English track CS 1.08 1.49

Short back S 0.39 0.52

Motorway CH 0.35 0.46

Motorway CS 0.31 0.39

Pavé CH 0.85 1.07

Drain well S 0.55 0.63
Testing set: The data corresponding to seconds from 7 to
14 of each acquisition. This set has been used for testing
the accuracy of identified models on data not used for
identification.

Since the considered road profiles are symmetric with
respect to the longitudinal axis of the vehicle, the half-car
decomposition structure of Fig. 6 has been considered,
which, as shown in the previous section, can be recast in the
form of Fig. 1.

Based on this decomposition structure, the iterative
identification algorithm of Section 2 has been applied. The
overall identified model relating u and y identified at the
end of iteration k is denoted NSMSðkÞ.
The initial guess for CE required at the initialization step

has been obtained from the laws of motion, assuming a
rigid chassis interacting with the engine through linear
spring and dumper.
In step 2, discrete time nonlinear models of SWTf

and SWTr are identified using the Set Membership
approach of Milanese and Novara (2004). The models
are of the form:

vtþ1 ¼ f ðvt; . . . ; vt�nv
; yt; . . . ; yt�ny

; u1
t ; . . . ; u

1
t�n1

; u2
t ; . . . ; u

2
t�n2
Þ

with vt ¼ FcnðttÞ, yt ¼ acnðttÞ, u1
t ¼ prnðttÞ, u2

t ¼ isnðttÞ,
where * stands for f or r. Models with values of nv, ny, n1

and n2 between 1 and 6 have been identified and the
best one has been chosen, having nv ¼ 1, ny ¼ 2, n1 ¼ 2,
n2 ¼ 2.
In step 3, the model of CE is obtained identifying linear

OE models by means of the Matlab Identification Toolbox,
of the following form:

ytþ1 ¼ aoyt þ � � � þ any
yt�ny
þ bovtþ1 þ � � � þ bnv

vt�nv

with vt ¼ ½F cf ðttÞ;F crðttÞ�, yt ¼ ½acf ðttÞ; acrðttÞ�. Several
orders have been tested and the best results have been
obtained by an OEð6; 6; 0Þ model.
In Table 3 the root mean square errors (RMSE) of front

and rear chassis accelerations obtained by models NSMSð1Þ
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Fig. 11. Experimental data: elements (1,1) of chassis transfer matrix: initial guess (bold line), identified at iteration 2 (thin line).

Fig. 12. Experimental data: front chassis accelerations for random road profile and CH Skyhook configuration: measured (bold line), simulated by

NSMð1Þ (thin line).
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and NSMSð2Þ on the testing set are reported. It can be
noted that significant improvements in chassis accelera-
tions accuracy have been obtained by means of the second
iteration. A third iteration has been also performed, but no
significant decrease of errors have been observed.

In Table 4 the RMSE of front and rear chassis
accelerations obtained by model NSMSð2Þ on the testing
set are reported for each separate road profile and Skyhook
setting.
In Fig. 11 the chassis transfer matrix elements (1,1) of
the initial guess and identified at the 2nd iterations are
reported.
In Figs. 12–15 measured front and rear chassis accelera-

tions and the ones estimated by models NSMSð1Þ and
NSMSð2Þ are shown for the portion of testing data
corresponding to the last 2 s of the random road profile
with the CH Skyhook setting. In Figs. 16 and 17 measured
front and rear chassis accelerations and the ones estimated
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Fig. 13. Experimental data: front chassis accelerations for random road profile and CH Skyhook configuration: measured (bold line), simulated by

NSMð2Þ (thin line).

Fig. 14. Experimental data: rear chassis accelerations for random road profile and CH Skyhook configuration: measured (bold line), simulated by NSMð1Þ

(thin line).
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by models NSMSð2Þ are shown for the portion of testing
data corresponding to the first second of the English track
road profile with the H Skyhook setting.

In conclusion, the identified model NSMSð2Þ appears to
provide quite satisfactory simulation accuracy for all the
considered road profiles and Skyhook settings. This can be
seen in the tables reporting the simulation RMSEs, which
result quite small compared to the amplitudes of the
considered accelerations signals, and in all the figures,
where the experimental data are simulated with an
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Fig. 15. Experimental data: rear chassis accelerations for random road profile and CH Skyhook configuration: measured (bold line), simulated by NSMð2Þ

(thin line).

Fig. 16. Experimental data: front chassis accelerations for English track road profile and H Skyhook configuration: measured (bold line), simulated by

NSMð2Þ (thin line).
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accuracy which appears to be quite good, especially in view
of the fact that a wide range of frequencies is accounted for
the model to be used in evaluating the comfort perfor-
mances of the damper control system. To our knowledge
vertical dynamics physical models, even using the most
sophisticated physical equations for chassis, suspensions,
wheels and tires, do not provide, on the considered
frequency range, simulation accuracy comparable to the
one provided by the NSMSð2Þ model.
The NSMSð2Þ model has been actually used to design and

test the fast model predictive control (FMPC) system for
vehicles with semi-active suspensions proposed in Canale,



ARTICLE IN PRESS

Fig. 17. Experimental data: rear chassis accelerations for English track road profile and H Skyhook configuration: measured (bold line), simulated by

NSMð2Þ (thin line).
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Milanese, Novara, and Ahmad (2005) and registered as
patent N. PCT/IB2005/000622. The FMPC control system
has been tested with success on a real car on a test bench at
Centro Ricerche FIAT, largely confirming the simulation
results obtained in virtual environment based on the
NSMSð2Þ model.

6. Conclusions

Block-oriented or structured identification is a well
known approach used in the literature to face the
complexity and accuracy problems in identification of
nonlinear systems. In particular, accounting for physical
information on the interconnection structure of the system
to be identified, significant improvements in identification
accuracy over unstructured methods may be obtained.
Widely investigated are Hammerstein, Wiener or Lur’e
systems, consisting of linear dynamic and nonlinear static
systems, connected in cascade or feedback form. However,
in practical applications more general decomposition
structures may arise, where the nonlinear systems may be
dynamic, as shown in the presented example of controlled
suspension vehicles. In the paper we have proposed an
iterative algorithm for the identification of a system
composed of two dynamic MIMO systems, one linear
and the other one nonlinear, interconnected in feedback
form by an unknown multivariable signal.

A key feature of the proposed structured identification
method is that the dynamic nonlinear subsystem is not
supposed to have a given parametric form. In this way the
complexity/accuracy problems posed by the proper choice
of a suitable parametrization and by trapping in local
minima during parameters optimization are circumvented.
Moreover, the simulation error of the overall model is
shown to be a nonincreasing function of iterations. Indeed,
the algorithm may converge in few iterations to very
satisfactory estimates even for quite rough initializations,
as shown in the presented example, related to the
identification of the vertical dynamics of vehicles with
controlled suspensions.
The results presented here and in Milanese, Novara,

Mastronardi, and Amoroso (2004), where the method is
applied to a more complex decomposition, show that the
proposed structured identification algorithm may prove to
give quite accurate models in non trivial real applications.
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